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We show that while Eu’s claim is true that we made a mistake regarding the asymptotic behavior of his
theory is true, the correct asymptotic behavior cannot have a physical meaning. We analyze in more detail his
theory for a dilute gas of rigid spheres, and show that in some cases it predicts a negative valugxof the
component of the pressure tensor.
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There are two main objections raised by E4 in the far we have taken the Navier-Stokes regime, but from now
abstract of his Comment on our walrR]. The first objection on we will consider extensions to the Navier-Stokes equa-
is that we made a mistake regarding the asymptotic behavidions. We will use the notatioAu, / IX= dyUy .
of the xx component of the pressure tenddy, given by his There are several statements made byHiwhich in our
theory[3,4]. The second one is that if the velocity gradientsopinion, lack support and therefore the “categorical” way in
in the transverse components of the stress are missing, thevhich they are stated is misleading. Take, for example, the
this implies a vanishing shear viscosity. We will follow Eu’s statement, “Besides, because the stress evolution equations
notation closely in order to facilitate the reading of this work. of theirs cannot be shown to be consistent with the laws of
Further, he claimed that many of his results are valid forthermodynamics, their nonlinear viscosity formula cannot be
gases and liquids. Here we will restrict the discussion fomeaningful basis for comparisons with well tested and ther-
dilute gases. modynamically consistent result as the non-Newtonian vis-

Let us start by analyzing the second point. The Naviercosity formula given in Eq(2).” What are the laws of ther-
Stokes equations provide a sound theory that can be derivedodynamics that Eu is referring to? They certainly cannot be
using the kinetic theory of gas¢§] or using macroscopic the laws of thermodynamics for homogeneous systgtis
argumenty 6]. In the Navier-Stokes regime, the following since there are inhomogeneities in the system. Also, he can-

constitutive relation for dilute gases holfs: not be referring to the laws of linear irreversible thermody-
- namics(LIT) [11], a sound and well accepted theory, since
P=pé—2mno[Vu]'?, (1) the problem of nonlinear viscosity is in fact beyond the lin-

h is th he hvd _ ear regime and therefore outside LIT. The laws of thermody-
whereP is the pressure tensqu,the hydrostatic pressuré,  pomics that Eu is talking about must then be an extension of
the unit tensory, is the shear viscosity in the Navier-Stokes | |1 However. Eu's version of thermodynamics is only a

regime that is independent &fu, and[Vu]® denotes the theory among many othef42], and the question of what is
symmetric traceless tensor formed from the tensorinthe  he correct thermodynamics beyond LIT is in our opinion an
case of an unidirectional flow we have, open tas13]. We think that the statement made by Eu is
unfair because it discredits our results without a basis. Also,
U(Y,Z,0) = (UeXY, 2.0, Uy (Y, 2,), Uuz(Xy, Z,1)) it would be important to know to what specific law of ther-
=(Uy(x,Y,2,1),0,0). 2) modynamics Eu thinks our results are at odds. We will see
later that it is true that our resulf®] have a more limited
Notice that we may consider the case in whiglfx,y,z,t) scope than we thought, but the reason for this comes from
=Uu,(x,t); as an specific example of this situation we canother well sustained objections.
mention the case of a stationary shock wave, where Let us now analyze the point of the asymptotic behavior
u,(X,Y,z,t) = u,(x), which has been extensively studied, see for P,, when (Vu]®:[Vu]®)¥2—, and in order to make
for example,[7-9] and references therein. lf,(x,y,z,t) the discussion clear we will introduce the following thermi-
=uy(x,t), then[Vu]® is diagonal and the nonvanishing nology; PE" will denote thexx component of the pressure

components are given by tensor in Eu’'s theory4] for constant temperaturesee Eq.
(8.67],
) 2 duy 2) 1 Jduy
[Vulil=5—, [Vu]yy=———, -
3 Ix 3 X - sinh™ *k, @)
PXX—PZ—Z%T[VU]XX , 4
TuI@— 1 duy 3 '
[ u]zz - 3 Ix ( )

wherep, the hydrostatic pressure, angl is defined by[4]

So, there are specific situations—a traveling shock Wave—[See Eq(8.66 and below Eq(8.39],

for which there are no gradients in the transvere directions 7
and the viscosity is not zero, which is in contradiction to the 70 )
/ k1= (MDA ([Vu]@:[Vu] )12

statement made by Eu. We would like to emphasize that so

o ®)
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where, according to Eul is the diameter of the molecul&, 3 . I .
the temperaturek the Boltzmann constant, and the mass !

of the atoms. ByPX2 we denote thexx component of the !
pressure tensor as obtained by Kauwinal. [14], which for
the Maxwell model reads as

P
Pie=p(1-R(9)9), e
whereg=aj* = nyd,u,/p and

—3-29g+3y1+(4/3)g+4g?
2 .

4g

R(g)= ()

PL, and PX- will denote our expressions as given by Egs.
(25) and (45) of our previous worl 2], namely, -1 1 ' '

P|_ =p 1+g 3.1
XX '
1+79/3 FIG. 1. Reducedckx component of the pressure tensor vs re-
duced longitudinal rateR}, vsa;* . Solid line, P}, (rigid spherek
long-dashed lineP%<® (Maxwell mode); dotted line,P:N" (rigid

XX
spheres

NL 98 * 2\/ *2 %
PRe=P| — zaf 13+ 5\2400! + 1974} +441).
8
® result for the viscosityy, [5] [see also Eq(19) in Ref.[2]],

In our work[2] we mentioned that for a dilute gas of rigid W€ can obtain from Eq$3)—(5) the following expression for

spheres, see E@9) below, P£! vanished in the limia} — XX *

—oo (d,u,— —), indeed an incorrect statement as AU 37

points out. It turns out from Eqg¢4) and (5) [1] that PEY sinh 1~/ — x4 a*|\32\/15aF
@) . — ). @12 o, 1 15 ! !

—+oo when[Vulyy — Foo(([Vu]'“: [ Vu]'¥) Y- ), *EUu_pEUu_q_
XX : Pxx - Pxx/p_ 1 14 A%

Let's now analyze Eu’s remark, “Incidentally, before at- 24 Y af |
tempting comparisons with other theories, their nonlinear 9

viscosity formula should have been tested against some
simulation or experimental results for nonlinear viscosity re- ; - !
ported in the literature, as has been done for @g.since sor fqr its three different forms that we have discussed above
1983 over a number of occasiof-13. Plausible limits of &€ given. Here, reduced means the component of the
the nonlinear viscosity in special cases are by no means dféssure tensor divided by the hydrostatic presgurk is
assurance for its veracity in the face of experiment.” The/MPortant to mention that while Eu and our results corre-
previous remark by Eu would imply that since his theory hasSPond to the stationary case, thg resglt by Kaeliral. [14]
been claimed to reproduce experimental data, we should a€°'T€SPonds to a nonstationary situation, but presumably we
cept that thexx component of the pressure tensor can bec@n take the stationary case in whighis time-independent
negative sincd,— — o When[Vu]ff()—WO. We, of course, and use Eq(7) for this case. Assuming that the distribution

disagree with this statement since a negative valu®{gis function doe§ n.ot.change when t.he:.omponent of the mo-
rl\%cular velocity is interchanged with itscomponent, see Eq.

In Fig. 1 the reducedx components of the pressure ten-

unacceptable even if there is agreement for other quantities, . o )
with experimental data. Of course there could be agreeme ) in Ref. [2], it follows that Py, =P,. S_mce the trace of .
the pressure tensor is equal to three times the hydrostatic

with experiment in some range of values of . L
([Vu]@:[Vu]®)2 with positive values forP,,, but such pressure—a condition that was misprinted below &)).of

an agreement does not imply that for all range of values of“" work.[2]—|: follows ﬂlat PWT Iizz and then we obtain
([Vu®:[Vu®)¥2 the formula should be valid. It is well the relation, Py, =3/2— P}, /2 (P},=P,,/p). This means
known that a particular expression in a physical theory mayat unphysical results are obtainedFif,>3, a point that
lead to unphysical results in some limits as it happens fo?""”EE‘? analyzed further below. In Fig. 1 it is shown that
Eu’s expression foP, .. We again think that Eu's remark is Pxx _ is negative foraj® greater than about 1, so Eu’s theory
unfair since we find it difficult to accept a theory, which as can at most be valid foa" e (—,~1].
mentioned by Eu, is consistent with Eu’s version of thermo- Our expressions fdPy, andP}, also have a certain range
dynamics and gives unphysical results, but we agree thaif validity [2] but the range is smaller than we thought. As
plausible limits are by no means assurance of veracity. Santog[15] pointed out,P,, should also be positive; a fact
In order to go further we will assume thaix,y,z,t)  that we did not analyzed in our previous work. It turns out
=u,(x,1), so that [Vu]®:[Vu]®)¥2=2/3 9,u,|. Consid-  that P};" makes physical sens®},, PJ=0) for aj e
ering the rigid sphere model and using the Navier-Stoke$—5/14¢), the limit of PQ‘XL whenaj — — exists but has
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no physical meaning,. Similary?)L(X has physical sense for P§XKa does not gives rise to unphysical results. We have the
af e[—1/3%). At af =—1/3 where Py, and P}y have limits PX3/p—0 asdyu,— andPK3/p—3 asdyu,— —oo,
physical meaning, it turns out that the percentage difference limit that was given incorrectly in Ref2].
between both expressions is about 15%), which means that Finally, we would like to point out that while Eu does not
the nonlinear contributions of the moments in the collisionexpect two different material functior(siscositie3 depend-
term are not small in general. ing on the sign of the velocity gradient, the results provided
For Eu’s theory, one has to analyze the range of Iongituby Karlin et al. [14], Santog15], and us[2] are in contrast
dinal rates for whictPy!is greater or equal than zero, and it wjth Eu’s expectation. Rephrasing Eu plausible expectations
turns out thatP}, " given by Eq.(9) is greater than 3 for are by no means assurance of veracity, but of course the
values ofaj" less than about-5, so the range of validity of  experiment or simulations have the last word. We have been
eq.(9) is for af e[~ —5,~1]. As mentioned by Eli1], his  unable to find experiments in the references provided by Eu
expression for the nonlinear viscosity is valid under the ap{1] to clarify this issue for the specific case considered here
proximation thatP,,— Py, is small, but using Eq9) it turns  (unidirectional flow of a dilute gas with no heat fiywand for
out that percentage difference betweefy™" and P;," can  the models discussed in this work, simulations are also ap-
be greater than 10% ifaj is outside the interval parently lacking. It should be pointed out that many impor-
[—-0.05,0.09. For af e[ —0.05,0.03 the percentage differ- tant points of the formulations by Eii6], Karlin and co-
ence betweelﬁ’ﬁxE” and P;‘XKa is less than about 0.25%, and workers[14,17,1§, Santog15], and other$19] were left out
betweenP*F! and P}N" less than about 1%. This means for reasons of space, but the reader can resort to the refer-
that for certain ranges o} in which Eu's formula is ex- ences provided here. It seems that more work is needed to
pected to be validP%F!, PE? andP:N" basically give the completely clarify the problem about the physical meaning
same results. of nonlinear viscosity in some situations, although a great

On the other handP*<?e[0,3]Va; e R, and therefore deal of understanding has recently been achieved.
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